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Background 

• Metrology and uncertainty analysis has been 
through many updates in the last decade 
– Guidance from ISO, NIST, NASA and AIAA in last 5 years 

• Rarely are complete, in-depth uncertainty analyses 
conducted for rocket engine measurements 
– Comparing changes in fuel or hardware necessitates a 

strong understanding of uncertainties 
– Additionally, most journals require some analysis for 

publication (rarely is it complete or in-depth, however) 
• Recent upgrades in Edwards’ EC-1 small-scale test 

facilities have utilized an involved analysis 
– Best-practices were developed to lower uncertainty 
– Process upgrades continue as the analysis gets more in-

depth 
• Here the best-practices and their reasons are 

presented 
Distribution A:  Approved for public release, distribution unlimited  
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Metric of Interest 

• Many parameters of interest could be used as a 
metric in the uncertainty analysis of a small-scale 
facility 

• c*-efficiency is chosen here because of its utility for 
a variety of changes (fuel, injector, cooling, etc.) 
– Measured c* is PcAt/ṁtotal 
– Theoretical c* is calculated using CEA code with rocket 

selection and finite chamber area option 
• CEA inputs are mixture ratio, area ratio (chamber to throat), 

formulation of hydrocarbon (CxHy), enthalpy of formation of 
hydrocarbon, chamber pressure and reactant temperature 

• Each input to the measured and theoretical c* will be 
discussed in terms of best practices and minimizing 
uncertainty 
– Includes dependent measurements such as density and 

vapor pressure 
Distribution A:  Approved for public release, distribution unlimited  
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Very Quick EC-1 Overview 

• EC-1 facility is a small-scale engine test rig 
– Typically between 100-500 lb thrust 
– Heat-sink oxygen-free copper hardware 

• Heat losses and their accompanying uncertainties are NOT 
considered yet 

– GOX and liquid hydrocarbon considered here 
• Also can run with gaseous hydrogen or gaseous hydrocarbon 

Distribution A:  Approved for public release, distribution unlimited  
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Weighted Least Squares 

• For most calibrations, a line is fit to the calibration 
points 
– The method used can be quite important for determining 

uncertainty associated with linearity and hysteresis 
• Simple least squares methods do not use or produce 

information on uncertainties 
• Weighted least squares methods can use 

uncertainty inputs and calculate uncertainties in the 
curve fit 
– A good method will consider uncertainty in both the 

supplied and measured values 
– A good method will not assume these two uncertainties 

are identical 
– A good method will allow uncertainties to be different at 

each point 
E. Mathioulakis and V. Belessiotis, Uncertainty and Traceability in Calibration by 

Comparison, vol. 11, no. pp 771-775, 2000. 
Distribution A:  Approved for public release, distribution unlimited  
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Pressure 
• Selection of high-quality transducers is imperative, but 

not always easy to assure 
• Several problems were encountered with one 

manufacturer but not with another manufacturer 
– Female bodies had zero point changes if fitting was tightened 

• EC-1 moved to male bodies on older transducers; new 
transducers do not have this issue 

– Internal temperature compensation     was 
not effective 
• EC-1 moved to uncompensated     

transducers which will be     
calibrated using an oven to     
develop temperature-dependence 

– Manufacturer given uncertainty      was 
not the actual uncertainty of       the 
transducer 
• Calibration is a must to determine actual uncertainty esp. 

linearity and hysteresis for a specific transducer 
Distribution A:  Approved for public release, distribution unlimited  
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Pressure 

• Routine calibration of transducers is required 
– Prior analysis should be used to assure transducers 

remain within the uncertainty and uncertainty should be 
enlarged if the calibration period was too long 

– EC-1 calibrates following every series of tests (e.g., when 
an injector is changed) 

– A series of upward and      
downward cycles is needed      
to elucidate the hysteresis      
of the system and ensure     
its inclusion in the     
uncertainty 

– Currently, the linearity and     
hysteresis of the      
transducers is the largest    
component of the uncertainty 

Distribution A:  Approved for public release, distribution unlimited  
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Pressure 

• Match the transducer to the range being recorded 
– Using a 0-3000 psi transducer to measure atmospheric 

pressure might give a reading of 14 +/- 1 psi while a 0-15 
psi transducer with a similar % uncertainty would give a 
13.72 +/- 0.015 psi reading 

• Atmospheric pressure should be recorded daily at 
minimum, but during the test is better 
– Reduces uncertainty in absolute pressure used in the c* 

calculations 
• Snubbing with a low density gas is recommended 

– Failing this, long leads and periodic inspection are 
required to ensure heat, soot and unburned hydrocarbons 
have not damaged the transducers 

– Helps insulate transducer from soot and hydrocarbons 
– Reduces time constant even with reasonably long leads 

• Proper grounding and shielding of wires is crucial 
Distribution A:  Approved for public release, distribution unlimited  
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Pressure 

• Chopping power supplies (regulators) in amplified 
transducers creates oscillatory output 
– Several transducer manufacturers were tried, all exhibited 

the same issue 
– Issue can be measured with oscilloscope or, depending on 

DAQ system, may be visible in output or supplied power 
• Oscillations feed back to the supply system and 

other transducers 
• EC-1 now uses unamplified transducers 
• Additionally, power is supplied via DAQ (Pacific 

Instruments 60-32-EM card) so at most 4 transducers 
are powered together 

• With changes, no oscillatory behavior is observed 
and standard deviation in voltage is substantially 
decreased 

Distribution A:  Approved for public release, distribution unlimited  
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Pressure 

Two randomly selected transducers.  New transducers 
are unamplified; old are amplified 
Distribution A:  Approved for public release, distribution unlimited  
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Temperature 

• Temperature enters directly in CEA input along with 
being a dependent variable in both flow rates 

• A known junction temperature, through the use of a 
junction box, lowers uncertainty 
– EC-1 uses a hot junction box because the experimental 

cell is not climate controlled (kept at 150°F) 
• Wire length should be kept to a practical minimum 

– Reduces cost—thermocouple grade wire should be used 
even on short distances 

– Reduces resistivity of wire (shorter lengths recommended 
by manufacturer) 

– Reduces noise due to electromagnetic background 
• Wires should be properly shielded and the system should be 

properly grounded 

Distribution A:  Approved for public release, distribution unlimited  
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Temperature 

• For full analysis, channels should be calibrated in 
situ using a thermocouple simulator 
– Alternately, each component in the system could be 

calibrated separately versus an in-situ system calibration 
• Obviously, this is time consuming 
• It assumes no feedback from any components to other 

components 
– If wire lengths, junction box, etc are the same then a few 

channels can be calibrated and the others verified at one 
or two points 

– While small, the noise in the system may not be negligible 
so, at a bare minimum, a few channels should be verified 
at two points to ensure uncertainty is at expected levels 

– EC-1 calibrated 5 randomly selected (in-use) channels 
yearly and verifies all channels prior to placing them in 
service 

Distribution A:  Approved for public release, distribution unlimited  
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Temperature 

• Uncertainty in thermocouple itself is currently the 
largest contributor to combined uncertainty 
– EC-1 currently relies on manufacturer’s provided 

uncertainty values and verifies a thermocouple in each 
batch is within the given uncertainty 

– Thermocouples should be calibrated; some percentage 
are likely to have lower-than-cited uncertainty 

– Selection of thermocouple type can be important 
• Balance between cost and accuracy 
• Match expected range and thermocouple within the available 

budget 
• EC-1 uses Type E thermocouples to measure propellant 

temperatures and Type K to measure engine wall 
temperatures 

Distribution A:  Approved for public release, distribution unlimited  
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Temperature 

• Low uncertainty thermocouple is 1% of difference 
between the thermocouple junction and reference 

• High uncertainty thermocouple is 1°C 

94.58%

3.49%
1.23% 0.71%

100°F Low u(Ttc)

T_tc

T_record

T_jun

Curve Fit

Uncertainty Breakdown 

Distribution A:  Approved for public release, distribution unlimited  
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Areas (Throat) 

• Throat diameter is measured using pin gauges 
– Reduces user-to-user variation versus bore micrometer 
– Black oxide coating allows visual inspection instead of 

frequent calibration 
– Smallest increments commercially available (5x10-4 inch) 
– Not temperature controlled or monitored (this introduces a 

reasonable additional uncertainty) 
– Main contributor to uncertainty is resolution (increments 

available) and user bias (strong function of resolution) 
• Circularity of the nozzle is assumed 

– Not verified in a rigorous manner 
– Requires careful nozzle design 

• Changes during firing are also ignored 
– Variation after run MUST be added to uncertainty 
– Changes from run-to-run indicate need to redesign nozzle 

cooling to lower uncertainty 
Distribution A:  Approved for public release, distribution unlimited  
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Areas (Chamber) 

• Chamber is typically 2 inches square with ¼ inch 
radii at the corners 
– Rounded corners should be included in area calculation 

(were neglected in early EC-1 testing) 
• Dimensions should be measured before and after 

each series of runs 
– Currently, EC-1 uses engineering tolerances for the 

uncertainty analysis 
– A program to implement this recommendation and 

augment uncertainty accordingly is underway 
• As with the nozzle area, changes during the 

experiment are neglected 
– No way to measure these changes 
– Heat-sink hardware makes this unlikely to be true, so 

appropriate additions to uncertainty are being considered 

Distribution A:  Approved for public release, distribution unlimited  
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Areas 

• Area Ratio uncertainty is 0.55% of the ratio (area 
ratios of 9 to 27 investigated) 

• The uncertainty in chamber area dominates the area 
ratio uncertainty 
– Currently, this uncertainty is unrealistically low as cited on 

previous slide 

Distribution A:  Approved for public release, distribution unlimited  
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Liquid Mass Flow Rate 

• The analysis assumes a liquid fuel and gaseous 
oxidizer as this is typical in EC-1 

• Liquid flow is metered using a cavitating venturi 
• Density and vapor pressure are important 

components in calculating the flow rate 
– Unless the fuel is a single, well-known chemical, they 

should be measured for each batch of fuel used 
– ASTM standards (D4052, D6377) should be used 
– Unless provisions are taken to control fuel temperature 

upstream of the venturi, measurements should be made 
as a function of temperature 

– Temperature enters the flow calculations through these 
properties 

• Pressure is the other dependent variable and was 
addressed earlier 

Distribution A:  Approved for public release, distribution unlimited  
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Liquid Flow Rate 

• Discharge coefficients should be calibrated at least 
yearly (and spot-checked after periods of heavy use) 
– Do not measure throat diameter and set a discharge 

coefficient as this adds substantial uncertainty 
– Calibrate using the actual fuels if practical; calibrate in the 

test system if practical 
• Reduces uncertainty substantially 

– Catch-and-weigh is generally the easiest calibration to 
employ and can be quite accurate 
• Use as large a time and weight as can be practically 

managed 
– EC-1 calibrated yearly in this manner 

• Actual fuels are used unless highly volatile or small quantity 
availability 

• Water calibrations are also performed (used for spot-checks 
between calibrations) 

• CD has been observed to change on the order of 0.5% yearly 
Distribution A:  Approved for public release, distribution unlimited  

Presenter
Presentation Notes
This change in CD would introduce a similar bias to the mass flow rates; the result of this type of bias is typically c*-efficiencies >100%



20 20 

Liquid Flow Rates 

• Sufficient upstream and downstream distances must 
be provided to obtain developed,  not swirling flow 
– EC-1 has >20D upstream and >13D downstream 
– Minimum industry recommendations are 10D upstream 

and 5D downstream 
– Can be relaxed if calibrating in the test system; however, 

discharge coefficient will likely be function of pressure 
• Effects of dissolved gases were examined and found 

to be unmeasurable in EC-1 system 
– However, bubbly flow downstream is undesirable for other 

reasons so bladder tanks are used 
– Fuel is not degassed prior to use 

• Vapor pressure and discharge coefficient 
uncertainties currently dominate 
– Prior to improvements, pressure uncertainty was a large 

contributor 
Distribution A:  Approved for public release, distribution unlimited  



21 21 

Liquid Flow Rate 

• The current uncertainty in liquid flow rate contrasted 
with the uncertainty with the current set-up except a 
change to the amplified transducers 

Distribution A:  Approved for public release, distribution unlimited  
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Gas Flow Rate 

• Gas flow is metered using a sonic nozzle 
• Dependent on pressure and temperature 
• As with liquid flow rate, calibrate to get CD 

– Measuring area and assuming discharge coefficient results 
in higher uncertainty 

– Discharge coefficients show less change over time than 
the venturis (still has some change) 

– Calibrations have been done at CEESI and in-line using a 
CEESI-calibrated nozzle upstream 
• Previously, a catch-and-weigh setup has been used but its 

complexity and specialized equipment made it undesirable 
since it did not produce lower uncertainties 

– EC-1 recalibrates in-house yearly or after heavy use 

Distribution A:  Approved for public release, distribution unlimited  
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Gas Flow Rate 

• Use an established procedure to calculate critical 
flow factor for the measured temperature and 
pressure 
– Several published procedures with similar, very small 

uncertainties (EC-1 uses a procedure by Stewart, Watson 
and Vaidya) 

– For large throat-to-pipe ratios this should be corrected for 
the finite velocity upstream of the throat 

• Provide sufficient upstream and downstream 
distances to have fully developed, not swirling flow 
– EC-1 has >28D upstream and 13.5D downstream 

• Locate valves downstream to mitigate compression 
upstream of the throat 
– Otherwise a nearly step-wise change in temperature 

overwhelms the thermocouple and may prevent reliable 
temperature readings 

Distribution A:  Approved for public release, distribution unlimited  
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Gas Flow Rates 

• Combined uncertainty is a larger percentage of flow 
rate than that in the liquid (dominates uncertainty in 
mixture ratio and total mass flow) 

• Combined uncertainty has a strong dependence on 
the uncertainty in the temperature 

Distribution A:  Approved for public release, distribution unlimited  
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Stoichiometric Coefficients 

• CEA needs the formulation of the hydrocarbon as an 
input 

• For single component fuels this is easy, but many 
liquid fuels are mixtures (such as RP-1 or RP-2) 
– Measurements should be made for each batch of fuel 

• Use an ASTM method (given in standard D5291) to 
calculate the hydrogen and carbon percentage 
– While contaminant levels are low for most fuels, the 

calculation should not rely on hydrogen percentage alone 
• Failure to know the contaminant level introduces substantial 

additional uncertainty 
• Carbon percentage is calculated by instruments at the same 

time a hydrogen percentage 
• Using a CxH1 formulation minimizes uncertainty in 

coefficients, but  does not minimize uncertainty in 
enthalpy 

Distribution A:  Approved for public release, distribution unlimited  
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Enthalpy 

• Again, for multicomponent fuels the heat of 
combustion should be measured for every batch 
– ASTM method D4809 is recommended 

• Enthalpy of formation is calculated from this heat of 
combustion along with other well-established values 
– These include molecular weights and enthalpies of 

formation of water and carbon dioxide 
• C1Hy formulation minimizes uncertainty in enthalpy 

– This finding is in direct opposition to that of the 
stoichiometric coefficients 

– The sensitivity coefficients of the CEA code are needed to 
establish which formulation results in a lower combined 
uncertainty in theoretical c* 

– Calculations at a single operating condition indicate the 
C1Hy formulations is the best choice 

Distribution A:  Approved for public release, distribution unlimited  
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Theoretical c* 

• Analysis is based on a single point 
• Rough sensitivity coefficient determination around 

that single point 
• Mixture ratio dominates the combined uncertainty 

– This finding is due in large part to its sensitivity 
– Mixture ratio uncertainty is dominated by uncertainty in 

gas flow rate which is, in turn, dominated by uncertainty in 
temperature 
• From this EC-1 has found it imperative to calibrate 

thermocouples prior to use 
• At single condition considered (MR=2.4, AR=21.4, 

Pc=700 psi, T=77°F) the uncertainty of 0.14% using 
the lowest thermocouple uncertainty (0.30% for 
other thermocouple manufacturer) 

Distribution A:  Approved for public release, distribution unlimited  
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Measured c* 

• Analysis based on a range of points but a single 
venturi and sonic nozzle 
– Chamber pressures 300-1000 psi, Throat Diameters 0.45 

to 0.65 inch, total mass flow rates 0.25-1.15 lb/s 
• Mass flow rate dominates the combined uncertainty 

– Main component of the total mass flow rate uncertainty is 
the gas flow rate 

– Again, temperature is the major contributor 
• Dependent on temperatures, using the low 

uncertainty thermocouples, the combined 
uncertainty in c* could be as high as 7.6% or as low 
at 0.5% 
– For a moderate (and typical) temperature of 70°F the 

uncertainty is <2% 

Distribution A:  Approved for public release, distribution unlimited  
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c*-Efficiency 

• Only a single condition has been considered to date 
(mliq=0.208 lb/s, mgas=0.500 lb/s, AR=21.4, Pc=700 psi, 
T=77°F) 

• Combined uncertainty at this condition is 1.22% 
– Strongly driven by temperature uncertainty 
– Due to strong gas flow rate dependence, combined 

uncertainty is close to specific uncertainty in gas flow rate 
• This suggests that the range for 40-100°F may run from 

nearly 8% to under 1% 
• Updates to system have decreased uncertainty 

significantly 
– At specific condition cited just changing transducers 

HALVED the uncertainty 
– Prior uncertainty was just under 3% 

• Does not include heat-loss corrections or 
uncertainties 

Distribution A:  Approved for public release, distribution unlimited  
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Future Work 

• Several items remain to further clarify uncertainty or 
to improve the combined uncertainty 

• First and foremost, thermocouples will be calibrated! 
• Heat transfer losses to the heat-sink hardware 

remain to be evaluated 
• A more robust and throrough evaluation of the CEA 

code at the range of typical conditions 
• On-going monitoring and assessment of engine 

cross sectional area is being implemented 
• Determine temperature dependence of the pressure 

transducers through calibration in an oven 
• Confidence bounds have not been established 

– Unlikely that a 95% confidence bound will be a simple 
multiple of 2 (too few degrees of freedom) 

Distribution A:  Approved for public release, distribution unlimited  
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